Discrete Random Variable

$$E(Y) = \mu_{Y} = \sum_{i=1}^{k} Y_{i} p(Y_{i})$$

$$\sigma_{Y}^{2} = \sum_{i=1}^{k} (Y_{i} - \mu_{Y}) p(Y_{i})$$

 $E(Y) = \mu_Y = (0 \times 0.233) + (1 \times 0.576) + (2 \times 0.150) + (3 \times 0.042) = 1.002$

 $\sigma_{\rm Y}^2 = (0 - 1.002)^2 (0.233) + (1 - 1.002)^2 (0.576)$ $+ (2 - 1.002)^2 (0.150) + (3 - 1.002)^2 (0.042)$ = 0.551 $\sigma_{\rm Y} = 0.742$

Binomial Random Variable

$$P(Y = k) = \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$

P(Y = 0) =

$$P(Y = 0) = \frac{2!}{0!(2-0)!} 0.05^0 (1 - 0.05)^{2-0} = 0.9025$$

$$P(Y = 1) = \frac{2!}{1!(2-1)!} 0.05^{1}(1-0.05)^{2-1} = 0.095$$

$$P(Y = 2) = \frac{2!}{2!(2-2)!} 0.05^2 (1 - 0.05)^{2-2} = 0.0025$$

 $E(Y) = \mu_Y = np$

 $\sigma_{\rm Y}^2 = np(1-p)$

 $E(Y) = \mu_Y = np = 0.05 \times 2 = 0.1$

$$\sigma_{\rm Y}^2 = np(1-p) = 2 \times 0.05 \times 0.95 = 0.095$$

 $\sigma_{\rm Y} = 0.308$

$$E(Y) = \mu_{Y} = \sum_{i=1}^{k} Y_{i} p(Y_{i})$$

$$\sigma_{Y}^{2} = \sum_{i=1}^{k} (Y_{i} - \mu_{Y}) p(Y_{i})$$

.

p = 0.05

n=2 1 0.9025 0.8 Probability 0.6 0.4 0.2 0.095 0.0025 0 1 2 0

$$E(Y) = \mu_{Y} = \sum_{i=1}^{k} Y_{i} p(Y_{i}) = 0.10$$

$$\sigma_{Y}^{2} = \sum_{i=1}^{k} (Y_{i} - \mu_{Y}) p(Y_{i}) = 0.095$$

Continuous Random Variable

Height in Inches

Women Age 18-45 in 2013

P(Z > 1.5) =

P(Z < 0.4) =

P(-1.0 < Z < 1.9) =

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Sampling Distributions

Proportion Female Among Members of US House of Representatives

p = 0.19

Proportion Female Among Members of US House of Representatives

p = 0.19

I drew a random sample of 20 members, and found the proportion female. Then I repeated that a total of 1,000 times. Here is a histogram of the 1,000 sample proportions.

Mean of sampling distribution = p = 0.19 Standard deviation of sampling distribution = $\sqrt{(p(1-p))/n} = \sqrt{(0.19(0.81))/20} = 0.088$

Ages of Members of US House of Representatives

30 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 84

Ages of Members of US House of Representatives

```
μ = 56.9
σ = 10.7
```

I drew a random sample of 20 members, and found their mean age. Then I repeated that a total of 1,000 times. Here is a histogram of the 1,000 sample means.

Mean of sampling distribution = μ = 56.9 Standard deviation of sampling distribution = $\sigma/\sqrt{n} = 10.7/\sqrt{20} = 2.39$

Confidence Intervals

A random sample of 212 high school students in a particular town showed that 56 smoke on a regular basis. Find the 95% confidence interval estimating the population percentage of smokers among high school students in this town. A random sample of 212 high school students in a particular town showed that 56 smoke on a regular basis. Find the 95% confidence interval estimating the population percentage of smokers among high school students in this town.

$$\hat{p} \pm Z_{\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

A random sample of 212 high school students in a particular town showed that 56 smoke on a regular basis. Find the 95% confidence interval estimating the population percentage of smokers among high school students in this town.

$$\hat{p} \pm Z_{\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

 $\hat{p} = 56/212 = 0.264$

 $0.264 \pm 1.96 \times \sqrt{\frac{0.264 (1-0.264)}{212}}$ 0.264 \pm 0.059, or 0.205 to 0.323 A random sample of 28 customers at a gas station shows an average gas purchase of 8.9 gallons with a standard deviation of 3.2 gallons. Find the 98% confidence interval estimating the population mean number of gallons purchased at this station. A random sample of 28 customers at a gas station shows an average gas purchase of 8.9 gallons with a standard deviation of 3.2 gallons. Find the 98% confidence interval estimating the population mean number of gallons purchased at this station.

$$\overline{Y} \pm t_{a/2} \frac{s_Y}{\sqrt{n}}$$

TABLE D

t distribution critical values														
	Upper-tail probability <i>p</i>													
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005		
1 2	1.000 0.816	1.376 1.061	1.963 1.386	3.078 1.886	6.314 2.920	12.71 4.303	15.89 4.849	31.82 6.965	63.66 9.925	127.3 14.09	318.3 22.33	636.6 31.60		
3 4 5	0.765 0.741 0.727	0.978 0.941	1.250 1.190	1.638 1.533	2.353 2.132 2.015	3.182 2.776 2.571	3.482 2.999 2.757	4.541 3.747 2.265	5.841 4.604	7.453 5.598	10.21 7.173 5.802	12.92 8.610		
6 7	0.718 0.711	0.906 0.896	1.134 1.119	1.440 1.415	1.943 1.895	2.447 2.365	2.612 2.517	3.143 2.998	3.707 3.499	4.317 4.029	5.208 4.785	5.959 5.408		
8 9	0.706 0.703	0.889	1.108	1.397 1.383	1.860 1.833	2.306	2.449 2.398 2.350	2.896 2.821	3.355 3.250 2.160	3.833 3.690	4.501 4.297	5.041 4.781 4.587		
11 12	0.697 0.695	0.876 0.873	1.088	1.363	1.796	2.201 2.179	2.328 2.303	2.718 2.681	3.106	3.497 3.428	4.025	4.437 4.318		
13 14 15	0.694 0.692 0.691	0.870 0.868 0.866	1.079 1.076 1.074	1.350 1.345 1.341	1.771 1.761 1.753	2.160 2.145 2.131	2.282 2.264 2.249	2.650 2.624 2.602	3.012 2.977 2.947	3.372 3.326 3.286	3.852 3.787 3.733	4.221 4.140 4.073		
16 17	0.690 0.689	0.865	1.071 1.069	1.337 1.333	1.746 1.740	2.120 2.110	2.235 2.224	2.583 2.567	2.921 2.898	3.252 3.222	3.686 3.646	4.015 3.965		
18 19 20	0.688 0.688 0.687	0.862 0.861 0.860	1.067 1.066 1.064	1.330 1.328 1.325	1.734 1.729 1.725	2.101 2.093 2.086	2.214 2.205 2.197	2.552 2.539 2.528	2.878 2.861 2.845	3.197 3.174 3.153	3.611 3.579 3.552	3.922 3.883 3.850		
21 22	0.686	0.859	1.063 1.061	1.323 1.321	1.721 1.717	2.080	2.189 2.183	2.518 2.508	2.831 2.819	3.135 3.119	3.527 3.505	3.819 3.792		
23 24 25	0.685 0.685 0.684	0.858 0.857 0.856	1.060 1.059 1.058	1.319 1.318 1.316	1.714 1.711 1.708	2.069 2.064 2.060	2.177 2.172 2.167	2.500 2.492 2.485	2.807 2.797 2.787	3.104 3.091 3.078	3.485 3.467 3.450	3.768 3.745 3.725		
26 27	0.684 0.684	0.856 0.855	1.058 1.057	1.315 1.314	1.706 1.703	2.056 2.052	2.162 2.158	2.479 2.473	2.779 2.771	3.067 3.057	3.435 3.421	3.707 3.690		
28 29 30	0.683 0.683 0.683	0.855 0.854 0.854	1.056 1.055 1.055	1.313 1.311 1.310	1.701 1.699 1.697	2.048 2.045 2.042	2.154 2.150 2.147	2.467 2.462 2.457	2.763 2.756 2.750	3.047 3.038 3.030	3.408 3.396 3.385	3.674 3.659 3.646		
40 50	0.681 0.679	0.851	1.050 1.047	1.303 1.299	1.684 1.676	2.021 2.009	2.123 2.109	2.423 2.403	2.704 2.678	2.971 2.937	3.307 3.261	3.551 3.496		
80 100	0.678	0.846 0.845	1.043 1.043 1.042	1.290 1.292 1.290	1.664 1.660	1.990 1.984	2.089 2.088 2.081	2.374 2.364	2.639 2.626	2.887 2.871	3.195 3.174	3.416 3.390		
1000 z*	0.675 0.674	0.842 0.841	1.037 1.036	1.282 1.282	1.646 1.645	1.962 1.960	2.056 2.054	2.330 2.326	2.581 2.576	2.813 2.807	3.098 3.091	3.300 3.291		
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%		
						Confide	nce level C							

A random sample of 28 customers at a gas station shows an average gas purchase of 8.9 gallons with a standard deviation of 3.2 gallons. Find the 98% confidence interval estimating the population mean number of gallons purchased at this station.

$$\overline{Y} \pm t_{a/2} \frac{s_Y}{\sqrt{n}}$$
$$8.9 \pm 2.473 \frac{3.2}{\sqrt{28}}$$

8.9±1.5, or 7.4 to 10.4

Hypothesis Tests

A manufacturer of salad dressings uses machines to dispense liquid ingredients into bottles that move along a filling line. The machine that dispenses salad dressings is working properly when 8 ounces are dispensed. Suppose that the average amount dispensed in a particular random sample of 35 bottles is 7.91 ounces with a variance of 0.03 ounces. Is there evidence that the machine should be stopped and production halted while they wait for repairs? The lost production from a shutdown is potentially so great that management feels that the level of significance in the analysis should be 99%.

TABLE D

t distribution critical values														
	Upper-tail probability <i>p</i>													
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005		
1 2	1.000 0.816	1.376 1.061	1.963 1.386	3.078 1.886	6.314 2.920	12.71 4.303	15.89 4.849	31.82 6.965	63.66 9.925	127.3 14.09	318.3 22.33	636.6 31.60		
3 4 5	0.765 0.741 0.727	0.978 0.941	1.250 1.190	1.638 1.533	2.353 2.132 2.015	3.182 2.776 2.571	3.482 2.999 2.757	4.541 3.747 2.265	5.841 4.604	7.453 5.598	10.21 7.173 5.802	12.92 8.610		
6 7	0.718 0.711	0.906 0.896	1.134 1.119	1.440 1.415	1.943 1.895	2.447 2.365	2.612 2.517	3.143 2.998	3.707 3.499	4.317 4.029	5.208 4.785	5.959 5.408		
8 9	0.706 0.703	0.889	1.108	1.397 1.383	1.860 1.833	2.306	2.449 2.398 2.350	2.896 2.821	3.355 3.250 2.160	3.833 3.690	4.501 4.297	5.041 4.781 4.587		
11 12	0.697 0.695	0.876 0.873	1.088	1.363	1.796	2.201 2.179	2.328 2.303	2.718 2.681	3.106	3.497 3.428	4.025	4.437 4.318		
13 14 15	0.694 0.692 0.691	0.870 0.868 0.866	1.079 1.076 1.074	1.350 1.345 1.341	1.771 1.761 1.753	2.160 2.145 2.131	2.282 2.264 2.249	2.650 2.624 2.602	3.012 2.977 2.947	3.372 3.326 3.286	3.852 3.787 3.733	4.221 4.140 4.073		
16 17	0.690 0.689	0.865	1.071 1.069	1.337 1.333	1.746 1.740	2.120 2.110	2.235 2.224	2.583 2.567	2.921 2.898	3.252 3.222	3.686 3.646	4.015 3.965		
18 19 20	0.688 0.688 0.687	0.862 0.861 0.860	1.067 1.066 1.064	1.330 1.328 1.325	1.734 1.729 1.725	2.101 2.093 2.086	2.214 2.205 2.197	2.552 2.539 2.528	2.878 2.861 2.845	3.197 3.174 3.153	3.611 3.579 3.552	3.922 3.883 3.850		
21 22	0.686	0.859	1.063 1.061	1.323 1.321	1.721 1.717	2.080	2.189 2.183	2.518 2.508	2.831 2.819	3.135 3.119	3.527 3.505	3.819 3.792		
23 24 25	0.685 0.685 0.684	0.858 0.857 0.856	1.060 1.059 1.058	1.319 1.318 1.316	1.714 1.711 1.708	2.069 2.064 2.060	2.177 2.172 2.167	2.500 2.492 2.485	2.807 2.797 2.787	3.104 3.091 3.078	3.485 3.467 3.450	3.768 3.745 3.725		
26 27	0.684 0.684	0.856 0.855	1.058 1.057	1.315 1.314	1.706 1.703	2.056 2.052	2.162 2.158	2.479 2.473	2.779 2.771	3.067 3.057	3.435 3.421	3.707 3.690		
28 29 30	0.683 0.683 0.683	0.855 0.854 0.854	1.056 1.055 1.055	1.313 1.311 1.310	1.701 1.699 1.697	2.048 2.045 2.042	2.154 2.150 2.147	2.467 2.462 2.457	2.763 2.756 2.750	3.047 3.038 3.030	3.408 3.396 3.385	3.674 3.659 3.646		
40 50	0.681 0.679	0.851	1.050 1.047	1.303 1.299	1.684 1.676	2.021 2.009	2.123 2.109	2.423 2.403	2.704 2.678	2.971 2.937	3.307 3.261	3.551 3.496		
80 100	0.678	0.846 0.845	1.043 1.043 1.042	1.290 1.292 1.290	1.664 1.660	1.990 1.984	2.089 2.088 2.081	2.374 2.364	2.639 2.626	2.887 2.871	3.195 3.174	3.416 3.390		
1000 z*	0.675 0.674	0.842 0.841	1.037 1.036	1.282 1.282	1.646 1.645	1.962 1.960	2.056 2.054	2.330 2.326	2.581 2.576	2.813 2.807	3.098 3.091	3.300 3.291		
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%		
						Confide	nce level C							

A manufacturer of salad dressings uses machines to dispense liquid ingredients into bottles that move along a filling line. The machine that dispenses salad dressings is working properly when 8 ounces are dispensed. Suppose that the average amount dispensed in a particular random sample of 35 bottles is 7.91 ounces with a variance of 0.03 ounces. Is there evidence that the machine should be stopped and production halted while they wait for repairs? The lost production from a shutdown is potentially so great that management feels that the level of significance in the analysis should be 99%.

H₀: µ=8 H_a: µ≠8 Critical value of t = 2.75 Reject H₀ if |t|>2.75 $t = \frac{\overline{Y} - \mu_Y}{s_Y / \sqrt{N}} = \frac{7.91 - 8.00}{0.173 / \sqrt{35}} = \frac{-0.090}{0.029} = -3.1$ REJECT H₀ A 2020 survey of a random sample of American adults asked people whether they had ever been denied housing they could afford because of their race. Among the 811 white respondents, 3% answered "yes." Among the 211 black respondents, 26% answered "yes." Test the hypothesis that blacks are more likely than whites to feel they have been unfairly denied housing because of their race. Use a significance level of 0.05.

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

A 2020 survey of a random sample of American adults asked people whether they had ever been denied housing they could afford because of their race. Among the 811 white respondents, 3% answered "yes." Among the 211 black respondents, 26% answered "yes." Test the hypothesis that blacks are more likely than whites to feel they have been unfairly denied housing because of their race. Use a significance level of 0.05.

 $\begin{array}{ll} H_0: p_{Black} \leq p_{White} & H_a: p_{Black} > p_{White} \\ Critical value of Z = 1.96 \\ Reject H_0 \mbox{ if } Z > 1.96 \end{array}$

 $\hat{p} = \frac{n_{black}\hat{p}_{Black} + n_{White}\hat{p}_{White}}{n_{Black} + n_{White}} = \frac{(211)(0.26) + (811)(0.03)}{211 + 811} = 0.077$ $Z = \frac{\hat{p}_{Black} - \hat{p}_{White}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{Black}} + \frac{\hat{p}(1-\hat{p})}{n_{White}}}} = \frac{0.26 - 0.03}{\sqrt{\frac{0.077(1-0.077)}{211} + \frac{0.077(1-0.077)}{811}}} = 11.16$ Reject H₀